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Superparamagnetic segmentation by excitable neural systems

Juan P. Neirotti, Samuel M. Kurcbart,* and Nestor Caticha
Departamento de Fı´sica Geral, Instituto de Fı´sica, Universidade de Sa˜o Paulo, Rua do Mata˜o Travessa R 187,

CEP 05508-900, Sa˜o Paulo, Brazil
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Magnetic modeling for clustering or segmentation purposes can either associate the image data to external
quenched fields or to the interactions among a set of auxiliary variables. The latter gives rise to superpara-
magnetic segmentation and is usually done with Potts systems. We have used the superparamagnetic clustering
technique to segment images, with the aid of different associated systems. Results using Potts model are
comparable to those obtained using excitable FitzHugh-Nagumo and Morris-Lecar model neurons. Interactions
between the associated system components are a function of the difference of luminosity on a gray scale of
neighbor pixels and the difference of membrane potential.
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I. INTRODUCTION

The interpretation of a dynamical system as a compu
e.g., amachinethat accepts an input, processes it using
dynamical rule and returns an output, permits to devise c
putational tools based on analogies to physical systems.
strategy is intensively used in the present work. Given a
of data points in a feature space, the problem of separatin
rather, organizing them into categories is a traditional o
appearing in several areas in science. It comes under na
such as density estimation, categorization, unsuperv
learning, clustering, exploratory data analysis, or segme
tion. The unsupervised characterization of points is p
formed by the identification of a similarity measure
groups, typically pairs, of points. Above a given thresho
the group is assigned to the same cluster. Two clusters ha
a point in common, form a single cluster. Thus, two clust
are different only if they have no points in common. T
measure should have several properties, but above a
must permit robust categorization.Ad hoc changes of the
threshold criteria, at least within a given interval, shou
have small changes in the classification. Depending on
amount of prior information, different methods can be a
ceptable.

A very important idea has been put forward by Doma
and co-workers@1#. They defined the similarity measur
based on the collective properties of an ancillary magn
system. To each data point, aq-state Potts magnetic spin
associated@2#. Two-body ferromagnetic spin interactions a
defined—but antiferromagnetic extensions or, e.g., thr
body interactions are possible—as a monotonically decr
ing function of the Euclidean distance~which is not a robust
similarity measure by itself!. Different collective behavior
can arise as a function of the temperature of the ancil
system. It is natural to use the spin-spin correlation funct
as a similarity measure. While phase transitions are only p
sible in the thermodynamic limit, for sufficiently large num
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ber of data points, numerically clear transitions can be se
At high temperatures the system is in the paramagnetic~dis-
ordered! phase, and each spin is itself a cluster. At very lo
temperatures almost all the spins belong to the same clu
~ferromagnetic phase!. At intermediate temperaturessuper-
paramagneticphases can be found, at which independ
spin domains appear. A cluster is formed by the data po
associated to the spins in a given category. Other ancil
choices can be made. A trivial change is done by looking
other values ofq. This has, within broad limits, no influenc
in the resulting categorization. Note that the number of c
egories is not determined byq. Other spin models can b
used, such asZ(q) or clock models.

The question we address in this paper is whether biolo
cally inspired models of neurons can be used in place
magnetic variables. This bears on the question whether
perparamagneticlike segmentation can occur by the dyn
ics of the visual system. Instead of associating a spin to e
data point, we associate a nonlinear oscillator inspired
electrical models of neuronal membranes derived from
Hodgkin and Huxley model. One of the results of this pap
is, as is often stated in the literature@3#, that we find that the
collective dynamical behavior of the coupled oscillators c
also serve to form categories. We have used the FitzHu
Nagumo and Morris-Lecar neurons. Both types have b
used to describe the behavior of the action potential in
ferent kinds of nervous cells. They respond to an input c
rent that, in the present case, is a sum of contributions fr
neighbors plus an external input current. These contributi
are mediated by interactions analogous to the exchange
teractions in the Potts model and biologically can be thou
as implemented through the action of interneurons. Stron
coupled oscillators will tend to have correlated membra
potentials while uncoupled neighbors will likely oscillate in
dependently, but whether potentials are correlated or not
ultimately be a collective property. Therefore, the correlat
can be used as a similarity measure as was the case for
variables. We will show that the mean value of the oscilla
frequency over the population has an equivalent role to
of the magnetization in the spin system and the external
put current plays the part of the temperature. Thus it is p
sible to find an interval of external input currents in which
©2003 The American Physical Society11-1
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NEIROTTI, KURCBART, AND CATICHA PHYSICAL REVIEW E68, 031911 ~2003!
superparamagnetic phase occurs in the neural oscillator
Temporal synchronization of locally coupled oscillato

have already been used to segment images. In Ref.@4#, a
locally excitatory globally inhibitory oscillator network
~LEGION! was used@5#, each oscillator coupled with its
local neighbors and with a global inhibitor. The input curre
used was different for stimulated and not stimulated osci
tors, and the couplings were ruled by a dynamic law. In Re
@6,7#, the amplitude and frequency of the oscillators we
used to separate observed objects from background. Th
cillators used herein were of the FitzHugh-Nagumo ty
connected by couplings that depended on the differenc
the membrane potential between neighbors with an input
rent for each oscillator depending on the gray level of
correspondent pixel. To desynchronize clusters correspo
ing to neighbor objects with the same intensity in the inp
image, an attention driven mechanism was introduced.
mechanism was implemented by a saliency map, with
ments that had an activity defined in such a way to mimic
functionality of real neural structures. Although our approa
is apparently similar to the described~LEGION oscillators
even look like FitzHugh-Nagumo oscillators!, we stimulate
all the oscillators in the network with the same input curre
The oscillators are coupled by a static hardwired connec
that obeys a Gaussian law with the distance~see below!,
modulated by a dynamic factor that depends on the dif
ence of the membrane potential between neighbors. This
tor is zero when neighboring oscillators are in synchrony
when the static connection is negligible. The time correlat
function among neighbors is then measured with the aim
use it as a similarity measure. Our approach is much simp
given that there are just two dynamic variables per oscilla
and there is no nead for a desynchronization mechanism

Since there is noa priori rule to categorize the subgroup
nor any knowledge about the number of subgroups, there
no criteria to verify which solution is thebest. The success o
a clustering mechanism should be measured in a prob
dependent~specialized! way. A specialistis frequently called
upon to determine an acceptable solution. From that a m
figure can be attributed to each segmentation. We constru
specialist image by segmentation of an image by hand. T
is used to measure merit figures for all systems, which co
out as comparable.

In Sec. II we present the three models used for segm
tation, the two biological models and the Potts based mo
The results of Monte Carlo~MC! simulations and integration
of the systems of coupled ordinary differential equations
presented in Sec. III. Section IV presents the conclusion

II. THE MODELS

The superparamagnetic clustering method, irrespectiv
whether it is based on magnetic variables such as Potts s
or artificial neurons, starts by determining a set of numb
which describe the interactions among pairs of dynam
units. This is based on information$(xn ,yn ,zn)% about the
image. For each pixeln of coordinates (xn ,yn) an integerzn
is given, which measures its luminosity or gray level~e.g.,
0<zn<255). The image can thus be represented by a a set
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of points in a three-dimensional space, each at a positio

rn5xni1ynj1aznk, ~1!

wherea is a suitable scale constant, andi, j , andk are the
orthonormal vectors of the three-dimensional space. The
teractionJi j 5J(di j ) is a decreasing function of the distanc
di j 5ur i2r j u between pixelsi and j, which is not, in general,
itself a robust criterion for categorization. The sum is ove
set of sites in which we choose to include first and possi
second nearest neighbors. Local interactions can be defi
in several ways, and here we will restrict to ferromagnetic
excitatory interactions. It is usual to define~as the permanen
connection weights in the LEGION system@4#!

Ji j 5
1

K̂
expS 2

di j
2

2a2D , ~2!

where K̂ is the number of neighbors considered~4 or 8,
first-nearest or first- and second-nearest neighbors! anda is a
scale constant.a and a are free parameters that have to
adjusted.

A. Potts model

The Potts model Hamiltonian is given by

H52(
( i , j )

Ji j dsisj
, ~3!

where si51,2, . . . ,q, dsisj
is the Kronecker delta symbo

(dsisj
51 if si5sj , and zero otherwise! and (i , j ) represents

the set of sitesj that are in the neighborhood of the sitei. The
order parameter of the system is the mean magnetiza
^m&,

^m&5
q^Nmax/N&21

q21
, ~4!

where Nmax5max$N1,N2, . . . ,Nq%, Nm is the number of
sites of a configuration in statem, andN is the total number
of sites. To localize the superparamagnetic region of par
eters the usual response function is the susceptibilityx,

x5
N

T
^~m2^m&!2&. ~5!

In order to define the clustering criteria we have to n
merically determine the spin-spin correlation functio
^dsisj

&. The Swendsen and Wang~SW! algorithm @8# is a
common choice for simulating these systems. An impro
ment that leads to a faster convergence of the quantities
in the segmentation process is given by the energy-ba
cluster update~ECU! algorithm, @9,10#. In terms of the SW
bond variablesni j between spinsi andj, the correlation func-
tion is given by

^dsisj
&5

~q21!^ni j &11

q
. ~6!
1-2
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SUPERPARAMAGNETIC SEGMENTATION BY EXCITABLE . . . PHYSICAL REVIEW E 68, 031911 ~2003!
Bond clusters are not the answer for the clustering probl
Bond clusters are dynamical objects, while spin clusters
objects defined in thermodynamic equilibrium.

B. FitzHugh-Nagumo and Morris-Lecar models

The landmark in modeling action potential and relat
membrane phenomena, the work of Hodgkin and Hux
~HH! @11#, gave rise to several variants. Such generalizati
may include either more elements of biological realism
result from simplifications, which at the expense of realis
lead to more manageable mathematical models. They m
eled the total membrane current by a sum of two contri
tions, an ionic plus a capacitive current. Ionic currents
due to the ionic flux through the membrane channels. T
model captures the dynamic behavior in four equations
each neuron compartment: one for the membrane pote
and three for the state variables determining the state of
ionic channels. For a general exposition about such mod
see, e.g., the work by Koch@12#.

The simplifications start by noting that there are at le
two separate time scales in the HH model. The membr
potential and the sodium activation variable in the HH mo
evolve on similar time scales, while the other two state va
ables, potassium activation and sodium inactivation, evo
on a similar, albeit much slower time scale. Given that
time dependency of the first pair of variables is very simil
a single dynamic variableV(t) is used to represent them
collectively. In the same way, the slow variables in the H
model are replaced by one slow variable,W(t). In this man-
ner, using the phase space method in the context of a ch
cal reaction bearing some similarities to nerve cell excitati
FitzHugh @13# and, independently, Nagumo, Arimoto, an
Yoshizawa@14# derived the following two equations to qual
tatively describe the events occurring in an excitable neu

«
dV

dt
5 f ~V!2W1I ext,

dW

dt
5V2pW2b. ~7!

f (V) introduces the nonlinearity and is given byf (V)
5V(V2a)(12V). The excitable behavior of the FitzHugh
Nagumo~FHN! system is quite robust. The single FHN ne
ron will go to a spiking limit cycle forI 2,I ext,I 1 , where
I 65(V62b)/p2 f (V6) and V6 are the extrema off. The
values of the parameters, in no way critical where chose
follows: «, which sets the ratio of time scales was taken
«50.005; a, b, and p are positive dimensionless constan
and the values we use area50.5, b50.15, andp51. I ext is
an external input current which for the coupled system w
incorporate the bias plus the influence of neighboring un
For this choice of parameters, if 0.109,I ext,0.591 the
spikes appear. Outside this range, the system goes to a s
point. At these limits the system undergoes a Hopf bifur
tion and therefore the frequency jumps discontinuously.
compare with a system which presents a continuous ons
spiking, we looked also at the Morris-Lecar model.
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The system of coupled equations presented by Morris
Lecar@15# to model barnacle muscle fibers develops a sad
bifurcation for the parameters we choose@16# and thus can
present arbitrarily small frequencies, and is given by

Cm

dV

dt
52I ionic~V,W!1I ext,

dW

dt
5

W`~V!2W

t~V!
, ~8!

where V is the membrane potential~in millivolts!, Cm
51 mF/cm2, andW is the activation variable for potassium
channels. All currents are in units ofmA/cm2 and timet is
measured in milliseconds. The ionic current has three co
ponents,

I ionic~V,W!5GCam`~V!~V2ECa!1GKW~V2EK!

1Gm~V2Vrest!.

We assume that the calcium conductance is always at e
librium, with its activation curve given by

m`~V!5
1

2 S 11tanh
V11

15 D .

The potassium activation variable obeys the following ac
vation law:

W`~V!5
1

2 S 11tanh
V210

14.5 D ,

and time constant

t~V!53 sech
V210

29
.

The value of the parameters areGCa51, GK52, Gm50.5,
ECa5100, EK5270, andVrest5250. All conductances are
in units of mS/cm2 and the reversal potentials in millivolts
At I 58.326 the isolated Morris-Lecar~ML ! neuron starts
spiking with arbitrarily small frequency~saddle bifurcation!.

For both types of neurons, as in the usual Potts case
associate to each pixel a single-compartment neuron. E
one interacts with its neighbors by a fast coupling, which c
be attributed to horizontal interneurons, which are affer
from the sensory cells. In addition, a constant input curr
stimulates each unit:

I i5I Fl01l1(
j

Ji j ~Vj2Vi !G , ~9!

where I sets in the overall scale of the current, playing
similar role to that of the temperature in the spin system,l0
and l1 are noncritical free parameters that have to be
justed,Ji j is the coupling constant between oscillators and
is given by Eq.~2! and the sum runs over all sitesj that are
first neighbors toi. When thei th oscillator is not synchro-
nized with its neighbors, the second term in Eq.~9! is zero
1-3
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NEIROTTI, KURCBART, AND CATICHA PHYSICAL REVIEW E68, 031911 ~2003!
only if Ji j 50. Thus, ifJi j Þ0 and if Il0 is within the range
of currents at which the oscillations are developed, the s
ond contribution pushes the value ofI i out of this regime and
the dynamic variables go to the stable point. The stable p
is common for all oscillators that receive the same in
current, thus, from this stable point as a new initial conditio
strongly coupled oscillators start in synchrony a new burs
oscillations. When the oscillators are synchroniz
l1( j Ji j (Vj2Vi) is zero, so the oscillators keep spiking i
definitely. If Ji j 50 there is no mechanism to synchronize t
oscillators, so their synchrony depends on the~random! ini-
tial conditions.

The order parameter, equivalent to the magnetization
the spin systems, is the mean oscillators frequency,

^ f &5
1

N (
i

f i ,

where f i is the frequency of the spikes at pixeli. The sum
runs over all the pixels in the figure. This quantity will ser
to characterize the superparamagnetic regime.

The simulation starts with all the oscillators having ra
dom initial configurations. The equations forW, which are
very simple and uncoupled, were integrated using the E
exponential method, see Ref.@17# for an exposition of the
method. The equations forV, which are coupled by the ex
ternal current term, were integrated with a semi-impli
method. In order to perform the clustering, the correlatio

r i j 5

(
k51

NS

@Vi~kdt !2Vi #@Vj~kdt !2Vj #

AF (
k51

NS

@Vi~kdt !2Vi #
2GF (

k51

NS

@Vj~kdt !2Vj #
2G

,

~10!

was measured. Heredt is the time step in the numerica
integration,NS is the number of numerical integration step
and the horizontal bar indicates time average. Equation~10!
plays the same role as Eq.~6!. The numerical integration wa
tested and compared on short runs with a much slo
fourth-order Runge-Kutta method to verify the integrati
programs. Discarded initial transients and integration tim
are discussed below. The correlation ofW variables, induced
via the membrane potentials, can also be used as a clust
criterion leading to identical results.

III. IMAGE SEGMENTATION

The method consists of two steps: First, the recognition
the control parameter range~temperature for the spin syste
and external current for the oscillator system! at which the
superparamagnetic regime is developed. Second, for the
ues of the control parameter in this interval, the correlatio
@Eqs.~6! and~10! for the spin and oscillator systems, respe
tively# are calculated in order to perform the image segm
tation.

The superparamagnetic regime is characterized by apla-
teau in the order parameter curve. For values of the con
03191
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parameter at which theplateauis developed, the correlation
are calculated and compared with a similarity thresholdu. If
the correlation between two pixels is larger thanu, the pixels
are similar, and both belong to the same cluster. Each
namical variable cluster is identified with a figure segmen
the end of the simulation.

A. Example

We have used the image shown in Fig. 1 as an applica
example. This image has 2403256 pixels, and gray scale
~0–255!. We performed a SW Monte Carlo with the param
eters shown in Table I and integrations of the equation s
tems~7! and ~8! with parameters shown in Table II.

Let us first study the spin system results. At high tempe
tures the system is in the disordered phase. During the si
lated annealing~diminishing the temperature! the lattice
spins start to see each other. At low temperatures the sys
is in an ordered~ferromagnetic! phase. There is an interme
diate temperature region at which we get the best image
long simulation has been performed in order to get a ben
mark magnetization curve. Using a first-nearest-neighbor
gorithm (K̂54), the magnetization and susceptibility curv
obtained for 50 temperatures in the range 0.001<kBT/«

FIG. 1. X-ray computerized tomography image of a damag
human brain. It presents five regions that can be visualized w
ease: the dark background, a thin structure~skin! surrounding a
bright ring ~bone!, a gray structure inside the ring~brain!, and a
light gray structure between the brain and the bone at the top
~damaged tissue!. Labels and other structures~arrows, the bright
strip at the right of the figure or the tiny bright structures at the
right! are not interesting for segmentation purposes.

TABLE I. Parameter values for the SW Monte Carlo simulatio

Parameters Values

K̂ 4

a 10
a 2.5
q 12
kBTmax/« 0.18
kBTmin /« 0.001
u 0.5
NT 50
MCPs 20 000
1-4
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SUPERPARAMAGNETIC SEGMENTATION BY EXCITABLE . . . PHYSICAL REVIEW E 68, 031911 ~2003!
<0.18, after 20 000 MC passes~each MC pass represents a
update of the entire spin configuration!, separated in 10 in-
dependent trials, are presented in Fig. 2. The total t
needed to get these curves in a 300-MHz, Pentium II PC
5 h, 20 min.

There is aplateauin the magnetization curve, associat
with the superparamagnetic phase. In this interval of te
peratures, the system develops spin domains that can b
sociated with image segments. In Fig. 3 we have present
set of images obtained at the temperatures marked withd
in Fig. 2. It is important to note that the best pictures fro
this set~using the bare eye as specialist! appear when the
system is in the superparamagnetic phase. If the tempera

TABLE II. Parameter values for the integration of systems~7!
and ~8!. In both cases the warm-up time wasNS/5.

Parameters FHN values ML values

K̂ 4 4

a 10 10
a 5 5

l0 /K̂ 0.3 0.3

l1 1.2 1.2
Ns 500 1000
I max 1.0 30.0
I min 0.0 5.0
u 0.5 0.5
dt 0.01 0.04

FIG. 2. Magnetization~top! and fluctuations~bottom! of the
magnetization for the spin system associated to Fig. 1. Thes mark
the data points and thed mark the temperatures at which the im
ages of Fig. 3 were taken.
03191
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is too high~first images! the image is too noisy; whereas
too low temperatures~last images! the image presents just
few segments and details are lost.

Because we are looking only for the 40 biggest segme
in each figure, the segmentation figures present light g
~cyan, for the on-line version of the paper! regions that are
single pixels or pixel clusters with areas smaller than
smallest segment considered. We will refer to this regions
noise.

For the FitzHugh-Nagumo oscillator system, the exter
currents are fixed at the interval 0,I ext,1. At currents
above 0.6 and below 0.1 the system is disordered and o
lators are mainly independent. We can characterize this
gion as a paramagnetic phase. When the current is ra
above 0.1, the system enters a ferromagneticlike regime.
ferromagnetic phase ends at an external current of about
For values above 0.5 and below 0.6, there is a superparam
neticlike phase. In this region we obtained the best imag
similar in quality to those obtained at the superparamagn
regime in the spin system. The time for a simulation of 1
plus 500 integration steps at 50 different values of the ex

FIG. 3. Segmentation of the original image presented in Fig
using the Potts spin model clustering, for the temperatures ma
with d in Fig. 2.
1-5
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NEIROTTI, KURCBART, AND CATICHA PHYSICAL REVIEW E68, 031911 ~2003!
nal current takes 1 h in thesame 300-MHz, Pentium II PC. I
is important to note that this is possibly, in opposition to t
spin system case, the smallest time needed to generate
images with this method. The curve of the mean freque
as a function of the external current is presented in Fig
The s represent the data points and thed the points at
which the best figures were found.

In almost the same manner we have worked with Mor
Lecar oscillators. The external currents are fixed at the in
val 5,I ext,30. At currents above 26 and below 8, the sy
tem is disordered and oscillators are mainly independ
~paramagnetic phase!. When the current is raised above
the system enters in a ferromagnetic phase. The superp
magneticplateau is found about 18,I ext,23. Beyond 26
the system returns to the paramagnetic phase. The time
simulation of 200 plus 1000 integration steps at 50 differ

FIG. 4. Mean value of the oscillator frequency over the figu
pixels, as a function of the input current for the FitzHugh-Nagu
system~top!; fluctuations~bottom!.
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values of the external current takes 3 h in thesame equip-
ment. The curve of the mean frequency as a function of
external current is presented in Fig. 5. Thes represent the
data points and thed the points at which the best figure
were found.

B. The specialist

There is no general method to decide which is the b
figure from all the ones generated at different values of
simulation parameters. For the present case, we have d
oped the following strategy. Using Fig. 1 and a simple ima
manipulation software, we havepaintedFig. 6, which can be
considered an eye segmentation of Fig. 1. Figure 1 is
x-ray computerized tomography image of a damaged hum
brain. It presents five regions that can be visualized eas
background, skin, bone, brain, and damaged tissue. Th

FIG. 5. Mean value of the oscillator frequency over the figu
pixels, as a function of the input current for the Morris-Lecar sy
tem ~top!; fluctuations~bottom!.
1-6
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SUPERPARAMAGNETIC SEGMENTATION BY EXCITABLE . . . PHYSICAL REVIEW E 68, 031911 ~2003!
structures were preserved in the specialist. Labels and o
structures are not interesting for segmentation purposes
they were mainly deleted from the specialist.

In order to compare the reference image with the sim
lated segmented images, we automatically estimate
many pixels in both images belong to similar clusters.
assign as correct, a pixel in the segmented image that
longs to a cluster comparable in size to the cluster of
pixel at the same position in the specialist figure. While t
does not always ensure a faithful measure, it was found t
reasonable for the present case, where the principal segm
are quite different in size. Let us considerM biggest clusters
of areasA1 ,A2 , . . . ,AM in the reference image, and asso
ate to themM countersN1 ,N2 , . . . ,NM , set to zero. If the
pixel at the position (x,y) in the reference image belongs
Ai and the pixel at the same position in the simulated fig
belongs to a cluster of areaÃ such thatuAi2Ãu/Ai,0.5, the
counterNi is increased in one. After comparing all the pixe
one by one, the following quantity is taken as a quality m
sure of the simulated image:

Q5
1

M (
i 51

M
Ni

Ai
. ~11!

For different values of the thresholdu and the control pa-
rameter, the best images according toQ are those presente
in Fig. 7 for the spin system, in Fig. 8 for the FitzHug
Nagumo system, and in Fig. 9 for the Morris-Lecar syste

IV. CONCLUSIONS

We have used the idea of superparamagnetic cluste
with neural units instead of the usual magnetic Potts sp
While artificial neurons have long been based on magn
analogies, the dynamical properties are seldom well re
sented by Ising or Potts spins. Segmentation in the brai
performed to extract information about color, form, distan
or size. Several parallel pathways and areas are respon
for each type of feature extraction and presumably some

FIG. 6. Figure 1 waspaintedby hand to produce the prese
figure, which can be considered an eye segmentation. Figure 1
sents five regions that can be visualized with ease: the dark b
ground, the skin, the bone, the brain, and the damaged tissue. T
structures were preserved in the specialist. Labels and other s
tures~such as the bright strip at the right of the figure or the ti
bright structures at the top right! are not interesting for segmenta
tion purposes and they were mainly deleted.
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these bind together to form the mental representation of
visual scene. The idea of synchronization or coherent os
lation for the feature extraction and binding is quite prom
nent in vision research. Although our model does not rep
sent the neural architecture in a realistic way, it holds so
elements which can permit thinking about visual segmen
tion in terms of analogous superparamagnetic clustering.
main ingredient in our neural segmentation model is that
coupling between the units is proportional to the differen
in membrane potential times the couplingJi j . It is here that
the information from the image enters, and it can be thou
as a lateral pathway arising from a connection mediated
interneurons that receive information from the receptor ce
Of course whether this occurs at a retinal level or furth
down is not addressed by our model. As described above
the oscillators are stimulated by the same external curr
Synchrony among similar oscillators is then achieved by
modulation action of the factor proportional to the differen
of the membrane potential in Eq.~9!.

The example presented here is just an illustration of
capabilities of the present method. The required time for
image segmentation can be shorter if the number of M
passes~MCPs! is reduced. The magnetization curve rema
the same~within statistical errors! if the number of MCPs is
reduced by a factor of 50. Therefore, in about 6 min it
possible to produce the magnetization curve~with bigger er-
ror bars but with clear information about the differe
phases! and images with the same quality as the ones p

re-
k-

ese
c-

FIG. 7. Best simulated images according toQ, consideringM
510, with kBT50.098 47«, u50.36, and Q50.63, kBT
50.094 41«; u50.46, andQ50.62; kBT50.090 35«, u50.41,
andQ50.64; andkBT50.086 29«, u50.50, andQ50.62, for the
upper left, upper right, lower left, and lower right panels, resp
tively. The light gray~cyan for the on-line version of the pape!
structure around the bone is noise.
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sented in Fig. 7. This time can be reduced in an order
magnitude by the use of the ECU algorithm@9,10#, improv-
ing the applicability of this segmentation technique to pro
lems such as the fast automatic calculation of segment a
from medical images. There are no important changes in
figure if the numberM of clusters considered to calculateQ
is increased. It is not obvious how to diminish the time us
to perform the calculation with the oscillator systems. Ne
ertheless, the quality of the pictures found is the same a
the spin system. Inherent parallelism in a biological syst
leads, however, to a reduction of the computation times b
factor of the order of the number of units. From the point
view of the comparison with the specialist, the three meth
are equivalent. Furthermore, for each of the methods the

FIG. 8. Best segmentation figures for the FitzHugh-Nagumo
cillator system. The values of the input currents and thresholds
I 50.59 and u50.59 for the upper left figure,I 50.57 and u
50.73 for the upper right figure,I 50.55 andu50.66 for the lower
left figure, andI 50.55 andu50.73 for the lower right figure. The
quality factors for all the figures are above 0.6. The light gray~cyan
for the on-line version of the paper! structure around the bone i
noise.
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parameters are the same if the specialist is substituted by
segmentation image of any one of the other two method

This model can be expanded in several ways, by putt
in more layers and trying to include more realistic biologic
elements. This, however, was not our aim, as we tried
show that the important clustering ideas put forward
Domany and co-workers can find a parallel in natural s
tems, if not identical in the details, at least in spirit. Althoug
Potts spins are not to be found in natural brains, the an
gous superparamagnetic clustering can still be implemen
using the available neurons.
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FIG. 9. Best segmentation figures for the Morris-Lecar oscilla
system. The values of the input currents and thresholds aI
521.84 andu50.88 for the upper left figure,I 521.33 andu
50.85 for the upper right figure,I 520.31 andu50.88 for the
lower left figure, andI 519.80 andu50.85 for the lower right
figure. The quality factors for all the figures are above 0.6. The li
gray ~cyan for the on-line version of the paper! structure around the
bone is noise.
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