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Superparamagnetic segmentation by excitable neural systems
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Magnetic modeling for clustering or segmentation purposes can either associate the image data to external
guenched fields or to the interactions among a set of auxiliary variables. The latter gives rise to superpara-
magnetic segmentation and is usually done with Potts systems. We have used the superparamagnetic clustering
technique to segment images, with the aid of different associated systems. Results using Potts model are
comparable to those obtained using excitable FitzHugh-Nagumo and Morris-Lecar model neurons. Interactions
between the associated system components are a function of the difference of luminosity on a gray scale of
neighbor pixels and the difference of membrane potential.
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[. INTRODUCTION ber of data points, numerically clear transitions can be seen.
At high temperatures the system is in the paramagridis:

The interpretation of a dynamical system as a computemrdered phase, and each spin is itself a cluster. At very low
e.g., amachinethat accepts an input, processes it using aemperatures almost all the spins belong to the same cluster
dynamical rule and returns an output, permits to devise comdferromagnetic phaseAt intermediate temperaturesiper-
putational tools based on analogies to physical systems. Thigaramagneticphases can be found, at which independent
strategy is intensively used in the present work. Given a setpin domains appear. A cluster is formed by the data points
of data points in a feature space, the problem of separating @ssociated to the spins in a given category. Other ancillary
rather, organizing them into categories is a traditional onehoices can be made. A trivial change is done by looking at
appearing in several areas in science. It comes under namether values of]. This has, within broad limits, no influence
such as density estimation, categorization, unsupervisei the resulting categorization. Note that the number of cat-
learning, clustering, exploratory data analysis, or segmentasgories is not determined hy. Other spin models can be
tion. The unsupervised characterization of points is perused, such ag(q) or clock models.
formed by the identification of a similarity measure of The question we address in this paper is whether biologi-
groups, typically pairs, of points. Above a given threshold,cally inspired models of neurons can be used in place of
the group is assigned to the same cluster. Two clusters havingagnetic variables. This bears on the question whether su-
a point in common, form a single cluster. Thus, two clustergperparamagneticlike segmentation can occur by the dynam-
are different only if they have no points in common. Theics of the visual system. Instead of associating a spin to each
measure should have several properties, but above all, data point, we associate a nonlinear oscillator inspired in
must permit robust categorizatioAd hoc changes of the electrical models of neuronal membranes derived from the
threshold criteria, at least within a given interval, shouldHodgkin and Huxley model. One of the results of this paper
have small changes in the classification. Depending on thss, as is often stated in the literatJi®, that we find that the
amount of prior information, different methods can be ac-collective dynamical behavior of the coupled oscillators can
ceptable. also serve to form categories. We have used the FitzHugh-

A very important idea has been put forward by DomanyNagumo and Morris-Lecar neurons. Both types have been
and co-workers[1]. They defined the similarity measure used to describe the behavior of the action potential in dif-
based on the collective properties of an ancillary magneti¢erent kinds of nervous cells. They respond to an input cur-
system. To each data point,gestate Potts magnetic spin is rent that, in the present case, is a sum of contributions from
associatedl2]. Two-body ferromagnetic spin interactions are neighbors plus an external input current. These contributions
defined—but antiferromagnetic extensions or, e.g., threeare mediated by interactions analogous to the exchange in-
body interactions are possible—as a monotonically decreageractions in the Potts model and biologically can be thought
ing function of the Euclidean distané&hich is not a robust as implemented through the action of interneurons. Strongly
similarity measure by itself Different collective behavior coupled oscillators will tend to have correlated membrane
can arise as a function of the temperature of the ancillaryotentials while uncoupled neighbors will likely oscillate in-
system. It is natural to use the spin-spin correlation functiordependently, but whether potentials are correlated or not will
as a similarity measure. While phase transitions are only poasltimately be a collective property. Therefore, the correlation
sible in the thermodynamic limit, for sufficiently large num- can be used as a similarity measure as was the case for Potts

variables. We will show that the mean value of the oscillator

frequency over the population has an equivalent role to that

*Permanent address: Departamento dex@#s Naturais, Univer-  of the magnetization in the spin system and the external in-

sidade Federal de"8alom do Rei, CEP 36301-160 8aloa do  put current plays the part of the temperature. Thus it is pos-
Rei, MG. Brazil. sible to find an interval of external input currents in which a
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superparamagnetic phase occurs in the neural oscillators. of points in a three-dimensional space, each at a position
Temporal synchronization of locally coupled oscillators

have already been used to segment images. In [Réf.a M'n=Xnl +Ynl +azyk, (1)

locally excitatory globally inhibitory oscillator network

(LEGION) was used[5], each oscillator coupled with its ; . .
local neighbors and with a global inhibitor. The input currentorthor_lormal vectors of the threg-d|mens]0nal space. The in-
used was different for stimulated and not stimulated oscilla{éractiond;; =J(d;) is a decreasing function of the distance
tors, and the couplings were ruled by a dynamic law. In Refsdii =|r;—r;| between pixels andj, which is not, in general,

[6,7], the amplitude and frequency of the oscillators wereltself a robust criterion for categorization. The sum is over a

used to separate observed objects from background. The o€t Of Sites in which we choose to include first and possibly

cillators used herein were of the FitzHugh-Nagumo typesecond nearest neighbors. Local interactions can be defined

connected by couplings that depended on the difference dff Several ways, and here we will restrict to ferromagnetic or
the membrane potential between neighbors with an input cu€Xcitatory interactions. Itis usual to defifes the permanent
rent for each oscillator depending on the gray level of thec@nnection weights in the LEGION systejdi))

where« is a suitable scale constant, ang, andk are the

correspondent pixel. To desynchronize clusters correspond- 2
ing to neighbor objects with the same intensity in the input 3 =£ex _ ﬂ )
image, an attention driven mechanism was introduced. The R 222/’

mechanism was implemented by a saliency map, with ele-

ments that had an activity defined in such a way to mimic thevhere K is the number of neighbors consideréi or 8,
functionality of real neural structures. Although our approachfirst-nearest or first- and second-nearest neightzorda is a

is apparently similar to the describ¢tlEGION oscillators  scale constante anda are free parameters that have to be
even look like FitzHugh-Nagumo oscillatgysve stimulate  adjusted.

all the oscillators in the network with the same input current.
The oscillators are cpupled by a static h_ardwired connection A. Potts model
that obeys a Gaussian law with the distarisee belov, S
modulated by a dynamic factor that depends on the differ- The Potts model Hamiltonian is given by
ence of the membrane potential between neighbors. This fac-
tor is zero when neighboring oscillators are in synchrony or H=— E Jij Os.s, ®)
when the static connection is negligible. The time correlation (@ "
function among neighbors is then measured with the aim to ,
use it as a similarity measure. Our approach is much simpletVher€si=1,2,... g, &g is the Kronecker delta symbol
given that there are just two dynamic variables per oscillatof Jss, =1 if s;=s;, and zero otherwigeand (. ) represents
and there is no nead for a desynchronization mechanism. the set of sitegthat are in the neighborhood of the sit&he

Since there is na priori rule to categorize the subgroups, order parameter of the system is the mean magnetization
nor any knowledge about the number of subgroups, there argn),
no criteria to verify which solution is thieest The success of
a clustering mechanism should be measured in a problem-
dependentspecializedl way. A specialistis frequently called
upon to determine an acceptable solution. From that a merit
figure can be attributed to each segmentation. We constructwahere Ny,,,=maxN;, N, ... Ng}, N, is the number of
specialist image by segmentation of an image by hand. Thisites of a configuration in staje, andN is the total number
is used to measure merit figures for all systems, which comef sites. To localize the superparamagnetic region of param-
out as comparable. eters the usual response function is the susceptibility

In Sec. Il we present the three models used for segmen-

<Nmax/N>_ 1

q
(my= -1 4

tation, the two biological models and the Potts based model. N 9

The results of Monte CarlgMC) simulations and integration X= ?<(m— (m)*). (5

of the systems of coupled ordinary differential equations are

presented in Sec. lll. Section IV presents the conclusions.  In order to define the clustering criteria we have to nu-

merically determine the spin-spin correlation function
<5sisj>' The Swendsen and War@W) algorithm [8] is a
common choice for simulating these systems. An improve-
The superparamagnetic clustering method, irrespective ghent that leads to a faster convergence of the quantities used
whether it is based on magnetic variables such as Potts spilfs the segmentation process is given by the energy-based
or artificial neurons, starts by determining a set of numbersluster updat¢ECU) algorithm,[9,10]. In terms of the SW
which describe the interactions among pairs of dynamicabond variables;; between spinsandj, the correlation func-
units. This is based on informatioifx,,y,,z,)} about the tion is given by
image. For each pixei of coordinates X, ,y,) an integerz,
is given, which measures its luminosity or gray levelg., (.0)= (q—1)(n;;)+1 ®)
0=<2z,<255). The image can thus be representedita set SiS) q '

Il. THE MODELS
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Bond clusters are not the answer for the clustering problem. The system of coupled equations presented by Morris and

Bond clusters are dynamical objects, while spin clusters areecar[15] to model barnacle muscle fibers develops a saddle

objects defined in thermodynamic equilibrium. bifurcation for the parameters we chodd#®] and thus can
present arbitrarily small frequencies, and is given by

B. FitzHugh-Nagumo and Morris-Lecar models

dv
The landmark in modeling action potential and related Cingp =~ lionied( V. W)+l e,
membrane phenomena, the work of Hodgkin and Huxley
(HH) [11], gave rise to several variants. Such generalizations dW W, (V)—W
may include either more elements of biological realism or T v (8)

result from simplifications, which at the expense of realism,
lead to more manageable mathematical models. They mo%here V is the membrane potentiaiin millivolts), C,.

e_Ied the tpta_l membrane current by a sum O.f two contribu-_ 1 wFlcn?, andW is the activation variable for potassium
tions, an ionic plus a capacitive current. lonic currents are

. X 5 : -
due to the ionic flux through the membrane channels. Th Ch::;ﬁ':d '?‘rlll r%lijlzirsgéznaés I'rllhttjan;z)sngﬁﬁ:rrrrlezn?%istmiééscom-
model captures the dynamic behavior in four equations fo onents '

each neuron compartment: one for the membrane potential '
and three for the state variables determining the state of the | . (v W)=Gcm..(V)(V—Ecy + GW(V—Ey)

ionic channels. For a general exposition about such models,

see, e.g., the work by KodH.2]. +Gm(V—Vies)-

The simplifications start by noting that there are at least . ) .
two separate time scales in the HH model. The membran¥/e assume that the calcium conductance is always at equi-
potential and the sodium activation variable in the HH modelfiPrium, with its activation curve given by
evolve on similar time scales, while the other two state vari- 1
ables, potassium activation and sodium inactivation, evolve m.(V)==
on a similar, albeit much slower time scale. Given that the 2
time dependency of the first pair of variables is very similar
a single dynamic variabl&/(t) is used to represent them
collectively. In the same way, the slow variables in the HH
model are replaced by one slow variablé(t). In this man- 1
ner, using the phase space method in the context of a chemi- W (V)= =
cal reaction bearing some similarities to nerve cell excitation, 2
FitzHugh [13] and, independently, Nagumo, Arimoto, and
Yoshizawd 14] derived the following two equations to quali-
tatively describe the events occurring in an excitable neuron: V—10

7(V)=3 sechW.

L+ tanh o
an 15

"The potassium activation variable obeys the following acti-
vation law:

1 hV—1O
+tan 145 |

and time constant

s—V:f(V)—W+Iext,
dt The value of the parameters &Bg,=1, Gx=2, G,,=0.5,

Ec,=100, Ex=—70, andV,.= —50. All conductances are

d_W:V_ W—b 7) in units of mS/cr and the reversal potentials in millivolts.

dt P ' At 1=8.326 the isolated Morris-LecaiML) neuron starts

spiking with arbitrarily small frequencgsaddle bifurcation

f(V) introduces the nonlinearity and is given (V) For both types of neurons, as in the usual Potts case, we

=V(V—a)(1—-V). The excitable behavior of the FitzHugh- associate to each pixel a single-compartment neuron. Each

Nagumo(FHN) system is quite robust. The single FHN neu- one interacts with its neighbors by a fast coupling, which can

ron will go to a spiking limit cycle forl _<I<l,, where be attributed to horizontal interneurons, which are afferent

l.=(V.—b)/p—f(V.) andV. are the extrema of The from the sensory cells. In addition, a constant input current

values of the parameters, in no way critical where chosen astimulates each unit:

follows: &, which sets the ratio of time scales was taken as

£=0.005; a, b, andp are positive dimensionless constants _ N\

and the values we use aae=0.5,b=0.15, andp=1. | o iS = )\OH\lE,-: i VimVi), ©

an external input current which for the coupled system will

incorporate the bias plus the influence of neighboring unitswhere | sets in the overall scale of the current, playing a

For this choice of parameters, if 0.199.,<0.591 the similar role to that of the temperature in the spin systeg,

spikes appear. Outside this range, the system goes to a stalaed \; are noncritical free parameters that have to be ad-

point. At these limits the system undergoes a Hopf bifurcajusted,J;; is the coupling constant between oscillators and it

tion and therefore the frequency jumps discontinuously. Tds given by Eq.(2) and the sum runs over all sitgshat are

compare with a system which presents a continuous onset @ifst neighbors ta. When theith oscillator is not synchro-

spiking, we looked also at the Morris-Lecar model. nized with its neighbors, the second term in E9). is zero
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only if J;;=0. Thus, ifJ;; #0 and ifI A is within the range
! ! Labels

of currents at which the oscillations are developed, the sec Gatbage
ond contribution pushes the valuelgiut of this regime and  Damaged Tissue
the dynamic variables go to the stable point. The stable poin
is common for all oscillators that receive the same input
current, thus, from this stable point as a new initial condition, )
. . Healthy Tissue
strongly coupled oscillators start in synchrony a new burst of
oscillations. When the oscillators are synchronized, B°fle
N123;(Vj—V,) is zero, so the oscillators keep spiking in- skin
definitely. If J;;=0 there is no mechanism to synchronize the Background
oscillators, so their synchrony depends on @@don) ini-
tial conditions. FIG. 1. X-ray computerized tomography image of a damaged
The order parameter, equivalent to the magnetization ihuman brain. It presents five regions that can be visualized with
the spin systems, is the mean oscillators frequency, ease: the dark background, a thin struct(skin) surrounding a
bright ring (bone, a gray structure inside the ringprain), and a
(f)y= i 2 3 light gray st.ructure between the brain and the bone at the.top left
NS Y (damaged tissye Labels and other structurdarrows, the bright

' _ - strip at the right of the figure or the tiny bright structures at the top
wheref; is the frequency of the spikes at pixelThe sum right) are not interesting for segmentation purposes.
runs over all the pixels in the figure. This quantity will serve

to characterize the superparamagnetic regime. parameter at which thglateauis developed, the correlations
The simulation starts with all the oscillators having ran- 3re calculated and compared with a similarity thresteldf

dom initial configurations. The equations fd, which are  he correlation between two pixels is larger thrthe pixels

very simple and uncoupled, were integrated using the Eulege similar, and both belong to the same cluster. Each dy-

exponential method, see R¢fL7] for an exposition of the  pamical variable cluster is identified with a figure segment at
method. The equations faf, which are coupled by the ex- the end of the simulation.

ternal current term, were integrated with a semi-implicit
method. In order to perform the clustering, the correlation

N A. Example

S

> [Vi(két) —V][V-(ké‘t)—?] We have used the image shown in Fig. 1 as an application
e Tl S : example. This image has 24®56 pixels, and gray scale

Pij = = , (0—255. We performed a SW Monte Carlo with the param-
S — S — eters shown in Table | and integrations of the equation sys-
\/{ > [Vikat) = Vi2|| X [V (kat)—V;]? tems(7) and(8) with parameters shown in Table 1.
k=1 k=1 10 Let us first study the spin system results. At high tempera-
(10 tures the system is in the disordered phase. During the simu-

was measured. Herét is the time step in the numerical lated annealing(diminishing the temperaturethe lattice
integration,Ng is the number of numerical integration steps, Spins start to see each other. At low temperatures the system
and the horizontal bar indicates time average. Equation  is in an orderedferromagnetit phase. There is an interme-
plays the same role as E@). The numerical integration was diate temperature region at which we get the best images. A
tested and compared on short runs with a much slowelong simulation has been performed in order to get a bench-
fourth-order Runge-Kutta method to verify the integrationmark magnetization curve. Using a first-nearest-neighbor al-
programs. Discarded initial transients and integration timegjorithm (K=4), the magnetization and susceptibility curves
are discussed below. The correlationVvéfvariables, induced obtained for 50 temperatures in the range 0BRiT/e
via the membrane potentials, can also be used as a clustering

criterion leading to identical results. TABLE |. Parameter values for the SW Monte Carlo simulation.
I1l. IMAGE SEGMENTATION Parameters Values
The method consists of two steps: First, the recognition of K 4
the control parameter rangeemperature for the spin system a 10
and external current for the oscillator sysbeat which the a 25
superparamagnetic regime is developed. Second, for the val- q 12
ues of the control parameter in this interval, the correlations KgTmax/& 0.18
[Egs.(6) and(10) for the spin and oscillator systems, respec- keTmin/e 0.001
tively] are calculated in order to perform the image segmen- 0 0.5
tation. NT 50
The superparamagnetic regime is characterized plaa MCPs 20 000

teauin the order parameter curve. For values of the control
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TABLE Il. Parameter values for the integration of systefis
and(8). In both cases the warm-up time wilg/5.

Parameters FHN values ML values
K 4 4
a 10 10
1o 5 5
No/K 0.3 0.3
N1 1.2 1.2
Ng 500 1000
| max 1.0 30.0
I min 0.0 5.0
0 0.5 0.5
ot 0.01 0.04

=<0.18, after 20000 MC passésach MC pass represents an

update of the entire spin configuratjprseparated in 10 in-

dependent trials, are presented in Fig. 2. The total time
needed to get these curves in a 300-MHz, Pentium Il PC waj

5 h, 20 min.

There is aplateauin the magnetization curve, associated

with the superparamagnetic phase. In this interval of tem

peratures, the system develops spin domains that can be a

sociated with image segments. In Fig. 3 we have presented
set of images obtained at the temperatures marked w@h a

in Fig. 2. It is important to note that the best pictures from }

this set(using the bare eye as speciglisppear when the

system is in the superparamagnetic phase. If the temperatu

T

08 |

0.15 0.2

0_ 0.05. - ‘0.1
k,T/¢

FIG. 2. Magnetization(top) and fluctuations(botton) of the
magnetization for the spin system associated to Fig. 1.0heark
the data points and th® mark the temperatures at which the im-
ages of Fig. 3 were taken.

03191
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FIG. 3. Segmentation of the original image presented in Fig. 1,
using the Potts spin model clustering, for the temperatures marked
with @ in Fig. 2.

is too high(first image$ the image is too noisy; whereas at
too low temperatureflast imagesthe image presents just a
few segments and details are lost.

Because we are looking only for the 40 biggest segments
in each figure, the segmentation figures present light gray
(cyan, for the on-line version of the pape&egions that are
single pixels or pixel clusters with areas smaller than the
smallest segment considered. We will refer to this regions as
noise.

For the FitzHugh-Nagumo oscillator system, the external
currents are fixed at the interval<d.<1. At currents
above 0.6 and below 0.1 the system is disordered and oscil-
lators are mainly independent. We can characterize this re-
gion as a paramagnetic phase. When the current is raised
above 0.1, the system enters a ferromagneticlike regime. The
ferromagnetic phase ends at an external current of about 0.5.
For values above 0.5 and below 0.6, there is a superparamag-
neticlike phase. In this region we obtained the best images,
similar in quality to those obtained at the superparamagnetic
regime in the spin system. The time for a simulation of 100
plus 500 integration steps at 50 different values of the exter-

1-5
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FIG. 4. Mean value of the oscillator frequency over the figure  FIG. 5. Mean value of the oscillator frequency over the figure
pixels, as a function of the input current for the FitzHugh-Nagumopixels, as a function of the input current for the Morris-Lecar sys-
system(top); fluctuations(bottor). tem (top); fluctuations(bottom.

values of the external current tak& h in thesame equip-

gailrﬁugrﬁgﬁ,ﬁ?n% IZ '?hgl&;]?g‘; 322;%';&’;3”“%';;;5% ![thement. The curve of the mean frequency as a function of the
P P Y, PP external current is presented in Fig. 5. TBerepresent the

spin system case, the smallest time needed to generate 9094~ points and th@ the points at which the best figures
images with this method. The curve of the mean frequenq&vere found

as a function of the external current is presented in Fig. 4.
The O represent the data points and tie the points at
which the best figures were found.

In almost the same manner we have worked with Morris- There is no general method to decide which is the best
Lecar oscillators. The external currents are fixed at the interfigure from all the ones generated at different values of the
val 5<1,,,<30. At currents above 26 and below 8, the sys-simulation parameters. For the present case, we have devel-
tem is disordered and oscillators are mainly independendped the following strategy. Using Fig. 1 and a simple image
(paramagnetic phaseWhen the current is raised above 8, manipulation software, we haymintedFig. 6, which can be
the system enters in a ferromagnetic phase. The superparesnsidered an eye segmentation of Fig. 1. Figure 1 is an
magneticplateauis found about 181.,<23. Beyond 26 Xx-ray computerized tomography image of a damaged human
the system returns to the paramagnetic phase. The time forlaain. It presents five regions that can be visualized easily:
simulation of 200 plus 1000 integration steps at 50 differenbackground, skin, bone, brain, and damaged tissue. These

B. The specialist
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Labels Garbage
Damaged Tissue
‘ Healthy Tissue
Bone
Skin
Background

FIG. 6. Figure 1 wagaintedby hand to produce the present FE&NH
figure, which can be considered an eye segmentation. Figure 1 preid:
sents five regions that can be visualized with ease: the dark backil-§|
ground, the skin, the bone, the brain, and the damaged tissue. TheJ
structures were preserved in the specialist. Labels and other strug
tures(such as the bright strip at the right of the figure or the tiny
bright structures at the top righare not interesting for segmenta-
tion purposes and they were mainly deleted.

structures were preserved in the specialist. Labels and othd
structures are not interesting for segmentation purposes a
they were mainly deleted from the specialist.

In order to compare the reference image Wlth_the SIMU= 015, 7. Best simulated images accordingQp consideringM
lated segmented images, we automatically estimate how 10, with keT=0.0984%, 6=0.36, and Q=0.63, ksT
many pixels in both images belong to similar clusters. We_ g gg4 4%; 9=0.46, andQ=0.62; kyT=0.090 35, §=0.41,
assign as correct, a pixel in the segmented image that bengo=0.64; andksT=0.086 28, §=0.50, andQ=0.62, for the
longs to a cluster comparable in size to the cluster of thyper left, upper right, lower left, and lower right panels, respec-

pixel at the same position in the specialist figure. While thistively. The light gray(cyan for the on-line version of the paper
does not always ensure a faithful measure, it was found to b&ructure around the bone is noise.

reasonable for the present case, where the principal segments
are quite different in size. Let us considdrbiggest clusters

. . . these bind together to form the mental representation of the
of areasA;,A,, ... Ay in the reference image, and associ-

visual scene. The idea of synchronization or coherent oscil-
ate to themM countersNy,Ny, ... Ny, setto zero. If the 540 for the feature extraction and binding is quite promi-
pixel at the positionX,y) in the reference image belongs 0 ey in vision research. Although our model does not repre-
Aj and the pixel at the same position in the simulated figuren the neural architecture in a realistic way, it holds some
belongs to a cluster of arg&asuch thajA;—A|/A;<0.5, the  elements which can permit thinking about visual segmenta-
counter; is increased in one. After comparing all the pixels, tion in terms of analogous superparamagnetic clustering. The
one by one, the following quantity is taken as a quality meamain ingredient in our neural segmentation model is that the
sure of the simulated image: coupling between the units is proportional to the difference
M in membrane potential times the couplidg. It is here that
_ i 2 N; the information from the image enters, and it can be thought
Q= M{< A as a lateral pathway arising from a connection mediated by
interneurons that receive information from the receptor cells.
For different values of the threshol@l and the control pa- Of course whether this occurs at a retinal level or further
rameter, the best images accordingQare those presented down is not addressed by our model. As described above, all
in Fig. 7 for the spin system, in Fig. 8 for the FitzHugh- the oscillators are stimulated by the same external current.
Nagumo system, and in Fig. 9 for the Morris-Lecar system.Synchrony among similar oscillators is then achieved by the
modulation action of the factor proportional to the difference
IV CONCLUSIONS of the membrane potential in E(Q_). _ _ _
The example presented here is just an illustration of the
We have used the idea of superparamagnetic clusteringapabilities of the present method. The required time for an
with neural units instead of the usual magnetic Potts spinamage segmentation can be shorter if the number of MC
While artificial neurons have long been based on magnetipasse§MCPs9 is reduced. The magnetization curve remains
analogies, the dynamical properties are seldom well reprehe samegwithin statistical errorsif the number of MCPs is
sented by Ising or Potts spins. Segmentation in the brain ieeduced by a factor of 50. Therefore, in about 6 min it is
performed to extract information about color, form, distance possible to produce the magnetization cufwéth bigger er-
or size. Several parallel pathways and areas are responsilier bars but with clear information about the different
for each type of feature extraction and presumably somehowhasep and images with the same quality as the ones pre-

(11)

>
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FIG. 8. Best segmentation figures for the FitzHugh-Nagumo os- FIG. 9. Best segmentation figures for the Morris-Lecar oscillator
cillator system. The values of the input currents and thresholds argystem. The values of the input currents and thresholdsl are
1=0.59 and 6=0.59 for the upper left figure]=0.57 and 6 =21.84 and#=0.88 for the upper left figurel|=21.33 andé
=0.73 for the upper right figuré =0.55 andd= 0.66 for the lower =~ =0.85 for the upper right figure,=20.31 andf#=0.88 for the
left figure, andl =0.55 and#=0.73 for the lower right figure. The lower left figure, andl=19.80 and#=0.85 for the lower right
quality factors for all the figures are above 0.6. The light digsan figure. The quality factors for all the figures are above 0.6. The light
for the on-line version of the papestructure around the bone is gray(cyan for the on-line version of the papstructure around the
noise. bone is noise.

parameters are the same if the specialist is substituted by the
sented in Fig. 7. This time can be reduced in an order okegmentation image of any one of the other two methods.
magnitude by the use of the ECU algoriti®10], improv- This model can be expanded in several ways, by putting
ing the applicability of this segmentation technique to prob-in more layers and trying to include more realistic biological
lems such as the fast automatic calculation of segment areafements. This, however, was not our aim, as we tried to
from medical images. There are no important changes in thehow that the important clustering ideas put forward by
figure if the numbeM of clusters considered to calculafe  Domany and co-workers can find a parallel in natural sys-
is increased. It is not obvious how to diminish the time usedems, if not identical in the details, at least in spirit. Although
to perform the calculation with the oscillator systems. Nev-Potts spins are not to be found in natural brains, the analo-
ertheless, the quality of the pictures found is the same as i#OUS superparamagnetic clustering can still be implemented
the spin system. Inherent parallelism in a biological systen¥Sing the available neurons.
leads, however, to a reduction of the computation times by a
factor of the order of the number of units. From the point of
view of the comparison with the specialist, the three methods J.P.N. was supported by the FAPESP. J.P.N., S.M.K., and
are equivalent. Furthermore, for each of the methods the bebt.C. acknowledge the partial support from the CNPq.
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